KIT ELETTRONICO SUNGUARD PER QUADRI DI CAMPO DC DI IMPIANTI FOTOVOLTAICI

Schemi esemplificativi di collegamento e configurazione

SUNGUARD PROXIME S.R.L.

SunGuard è un marchio registrato Prodotto e distribuito da Proxime S.r.l.

Versione 3

SUNGUARD

SPECIFICHE TECNICHE DEL KIT

COMPOSTO DA: PWMS (MASTER), SCSC4S (SLAVE).

- 1. Porta seriale:
- 2. Protocollo:
- 3. Corrente nominale :
- 4. Alimentazione:
- 5. Consumo di corrente master:
- 6. Consumo di corrente singolo slave:
- 7. Indicatori LED su slave:
- 8. Temperatura operativa:
- 9. Montaggio:
- 10. Soglia minima lettura per canale:
- 11. Dimensioni master:
- 12. Dimensioni slave:
- 13. Dimensioni foro sensore Hall:

RS485 optisolata MODBUS-RTU 50A 18-30Vdc 100mA 400mA max 1 per canale (on > 250mA) -20 °C +70 °C Barra DIN 75mA 100mm X 150mm X 55mm 72mm X 120mm X 55mm 7mm X 12mm

LE FASI DI INSTALLAZIONE IN SINTESI

- 1. Installare la strumentazione elettronica di controllo in appositi contenitori rispettando le normative vigenti.
- 2. Utilizzare quadri o cassette che permettano il corretto isolamento IP65/66 nel caso siano in ambiente esterno.
- 3. Realizzare il cablaggio elettrico tra la scheda master PWMS2 e le slave SGSC4S tramite cavi elettrici. La distanza massima tra la scheda PWMS2 e SGSC4S è di circa 15 mt (vedi schemi).
- 4. Realizzare il cablaggio per la comunicazione RS485 utilizzando cavi specifici schermati e twistati (vedi schemi).
- 5. Installare i sensori ambientali (vedi schemi).
- 6. Effettuare il settaggio per l'indirizzamento ModBus RS485 (vedi nota).
- 7. Effettuare la taratura della misurazione delle stringhe fotovoltaiche tramite settaggio " f f " sui rotatory switch (vedi nota).
- 8. Effettuare l'aggiornamento Firmware all'ultima versione.

Attenzione: l'installazione deve essere effettuata solo da personale qualificato

SUNGUARD

TERMINAZIONE R5485

SUNGUARD INSTALLAZIONE DEI SENSORI AMBIENTALI

	Connessioni
A1	Ingresso temperatura modulo PT100 – CAVO ROSSO
A2	Ingresso temperatura modulo PT100 – CAVO ROSSO
A3	Ingresso temperatura modulo PT100 – CAVO BIANCO
B1	Ingresso temperatura modulo PT100 – CAVO ROSSO
B2	Ingresso temperatura modulo PT100 – CAVO ROSSO
B3	Ingresso temperatura modulo PT100 – CAVO BIANCO
C2	Ingresso temperatura ambiente PT1000 2 fili, (nessuna polarità)
C3	Ingresso temperatura ambiente PT1000 2 fili, (nessuna polarità)
D1	Ingresso temperatura ambiente PT1000 3 fili – CAVO VERDE
D2	Ingresso temperatura ambiente PT1000 3 fili – CAVO MARRONE
D3	Ingresso temperatura ambiente PT1000 3 fili – CAVO BIANCO
E-	 Sensore di irraggiamento 0/100 mV - NEGATIVO
E+	+ Sensore di irraggiamento 0/100 mV – POSITIVO
F-	- Sensore di irraggiamento 0/100 mV – NEGATIVO
F+	+ Sensore di irraggiamento 0/100 mV - POSITIVO
N-	Anemometro (nessuna polarità)
NS	Anemometro (nessuna polarità)

COMUNICAZIONE SERIALE MODBUS RS485

Comunicazione con RS485

Lo standard di comunicazione seriale RS485 è spesso usato in ambiente industriale per la semplicità di collegamento e per l'alta immunità ai disturbi.

Il collegamento, infatti, è costituito da due fili più il GND:

- 1. DATO + , A
- 2. DATO , B
- 3. GND

Questa facilità di cablaggio comunque non evita errori di cablaggio che comportano la mancata comunicazione dell'intero Bus485. (es. invertire un polo DATO+ con un DATO-)

Il bus RS485

Il bus di collegamento RS485 è generalmente formato da un cavo a coppie attorcigliate (twisted-pair) che collega i vari dispositivi con schermatura. La sezione del cavo può essere di 24 o 22 AWG per medie distanze, e dovrà essere aumentata nel caso di lunghe tratte.

Ogni dispositivo collegato su Bus485 deve avere un identificativo univoco (es. indirizzo Modbus) che dovrà essere impostato su ogni dispositivo dall'installatore.

COMUNICAZIONE SERIALE MODBUS RS485

Il cavo per le comunicazione RS485

La lunghezza e la qualità della linea influiscono sulla qualità del segnale.

Anche se la lunghezza massima in via teorica di un Bus485 è di 1200 mt si consiglia di utilizzare lunghezze di cavo non superiori a 500 mt. Le SunGuard Box sono dotate fino a 6 porte seriali permettendo di suddividere i Bus485 in sottoinsiemi riducendo così sia la lunghezza del Bus485 che il numero di apparati collegati su un unico Bus485.

Avvertenze per il cablaggio al fine di ottenere una buona qualità del segnale:

- Sezione: min. 2 + 1 x 0,32 mm2 (una coppia attorcigliata e un polo singolo)
- schermato
- cavi a coppie intrecciate (twisted pair)
- resistenti ai raggi UV (solo per posa all'esterno)

Cavo consigliato per comunicazione RS485

Si consiglia un cavo specifico per dare un esempio agli installatori anche se sul mercato ci sono vari produttori di cavi specifici per la comunicazione RS485.

Produttore: Belden Ambito di applicazione: automazione industriale Codice del prodotto: 3106A Poli: 3(una coppia + un polo) Schermato: Si Cavo da esterno: resistente ai raggi UV

SUNGUARD

COMUNICAZIONE SERIALE MODBUS R5485

Prima di mettere in rete RS485 i vari moduli SGSB accertarsi di avere impostato su ciascuno di essi (mediante i commutatori esadecimali) un indirizzo diverso per ogni modulo, onde evitare il conflitto di indirizzi tra moduli facenti parte della stessa rete RS485.

L'errata impostazione potrebbe danneggiare i moduli. Gli indirizzi possono essere scelti tra $1 \div 255$ decimale ($1 \div$ FF esadecimale).

Il commutatore esadecimale "1" rappresenta la cifra hi mentre il "2" la cifra lo.

Esempi:

 $1'' = A 2'' = 3 \log A3$ esadecimale che equivale a 163 decimale

1'' = 0 2'' = 6 leggo 06 esadecimale che equivale a 6 decimale.

L'etichetta bianca posizionata vicino ai commutatori da l'opportunità di indicare su ogni SGSB l'indirizzo seriale programmato.

00 - 0	20 - 32	40 - 64	60 - 96	80 - 128	A0 - 160	CO - 192	E0 - 224
01 - 1	21 - 33	41 - 65	61 - 97	81 - 129	A1 - 161	C1 - 193	E1 - 225
02 - 2	22 - 34	42 - 66	62 - 98	82 - 130	A2 - 162	C2 - 194	E2 - 226
03 - 3	23 - 35	43 - 67	63 - 99	83 - 131	A3 - 163	C3 - 195	E3 - 227
04 - 4	24 - 36	44 - 68	64 - 100	84 - 132	A4 - 164	C4 - 196	E4 - 228
05 - 5	25 - 37	45 - 69	65 - 101	85 - 133	A5 - 165	C5 - 197	E5 - 229
06 - 6	26 - 38	46 - 70	66 - 102	86 - 134	A6 - 166	C6 - 198	E6 - 230
07 - 7	27 - 39	47 - 71	67 - 103	87 - 135	A7 - 167	C7 - 199	E7 - 231
08 - 8	28 - 40	48 - 72	68 - 104	88 - 136	A8 - 168	C8 - 200	E8 - 232
09 - 9	29 - 41	49 - 73	69 - 105	89 - 137	A9 - 169	C9 - 201	E9 - 233
0A - 10	2A - 42	4A - 74	6A - 106	8A - 138	AA - 170	CA - 202	EA - 234
0B - 11	2B - 43	4B - 75	6B - 107	8B - 139	AB - 171	CB - 203	EB - 235
0C - 12	2C - 44	4C - 76	6C - 108	8C - 140	AC - 172	CC - 204	EC - 236
0D - 13	2D - 45	4D - 77	6D - 109	8D - 141	AD - 173	CD - 205	ED - 237
0E - 14	2E - 46	4E - 78	6E - 110	8E - 142	AE - 174	CE - 206	EE - 238
0F - 15	2F - 47	4F - 79	6F - 111	8F - 143	AF - 175	CF - 207	EF - 239
10 - 16	30 - 48	50 - 80	70 - 112	90 - 144	B0 - 176	D0 - 208	F0 - 240
11 - 17	31 - 49	51 - 81	71 - 113	91 - 145	B1 - 177	D1 - 209	F1 - 241
12 - 18	32 - 50	52 - 82	72 - 114	92 - 146	B2 - 178	D2 - 210	F2 - 242
13 - 19	33 - 51	53 - 83	73 - 115	93 - 147	B3 - 179	D3 - 211	F3 - 243
14 - 20	34 - 52	54 - 84	74 - 116	94 - 148	B4 - 180	D4 - 212	F4 - 244
15 - 21	35 - 53	55 - 85	75 - 117	95 - 149	B5 - 181	D5 - 213	F5 - 245
16 - 22	36 - 54	56 - 86	76 - 118	96 - 150	B6 - 182	D6 - 214	F6 - 246
17 - 23	37 - 55	57 - 87	77 - 119	97 - 151	B7 - 183	D7 - 215	F7 - 247
18 - 24	38 - 56	58 - 88	78 - 120	98 - 152	B8 - 184	D8 - 216	F8 - 248
19 - 25	39 - 57	59 - 89	79 - 121	99 - 153	B9 - 185	D9 - 217	F9 - 249
1A - 26	3A - 58	5A - 90	7A - 122	9A - 154	BA - 186	DA - 218	FA - 250
1B - 27	3B - 59	5B - 91	7B - 123	9B - 155	BB - 187	DB - 219	FB - 251
1C - 28	3C - 60	5C - 92	7C - 124	9C - 156	BC - 188	DC - 220	FC - 252
1D - 29	3D - 61	5D - 93	7D - 125	9D - 157	BD - 189	DD - 221	FD - 253
1E - 30	3E - 62	5E - 94	7E - 126	9E - 158	BE - 190	DE - 222	FE - 254
1F - 31	3F - 63	5F - 95	7F - 127	9F - 159	BF - 191	DF - 223	FF - 255

SUNGUARD

TARATURA DELLA MISURAZIONE DELLE STRINGHE FOTOVOLTAICHE SULLA SCHEDA PWMS2

- 1. <u>Accertarsi che non ci sia alcuna corrente DC nelle stringhe durante la fase di taratura</u>
- 2. Spegnere la scheda master PWMC2
- 3. Spostare le due "rotelle" del settaggio ModBus su F F
- 4. Dare alimentazione alla scheda master PWMC2
- 5. Attendere la procedura di auto-taratura per circa 120 secondi
- 6. Spegnere nuovamente la scheda master PWMC2
- 7. Riportare il settaggio delle due "rotelle" del settaggio ModBus sull'indirizzo corretto (vedi settaggio dell'indirizzamento ModBus)
- 8. Accedere la scheda master PWMC2

Procedura di aggiornamento:

- 1. Scaricare il software gratuito dal sito web <u>www.sunguard.it</u> area installatori dopo aver effettuato una veloce registrazione
- 2. Decomprimere il file zip ed avviare il relativo programma "USB bootloader.exe".
- 3. Nella finestra che appare cliccare sul pulsante "Load File" e caricare il file del firmware, ovvero quello con estensione .cyacd
- 4. Connettere il cavo USB tra il PC e la SG-SensorBox (Spenta).
- 5. Alimentare la SG-SensorBox. La scheda appena alimentata entra in "modalità programmazione".
- 6. La "modalità programmazione" viene rilevata dal programma che colorerà i due box presenti nella finestra stessa ($VID(0x) \in PID(0x)$) in modo differente.
- 7. Nella "modalità programmazione" si avranno a disposizione 5 secondi per cliccare sul pulsante "Program".
- 8. Attendere l'avanzamento della barra di progressione fino al completo caricamento del firmware sulla SG-SensorBox.
- 9. Spegnere la SG-SensorBox e scollegare il cavo USB.

SUPPORTO TECNICO SUNGUARD

Assistenza telefonica:

02 45472497

Sito Web:

www.sunguard.it